Understanding the Relationship Between Drives and Harmonics

IEEE-519 and Mitigation Methods

Jeff Smith Mechanical Resource Group Director of Drive Sales, Aftermarket Technical Services

"Harmonics are not a problem unless they are a problem!"

- Utility is responsible for providing "clean" voltage.
- Customer is responsible for not causing excessive current harmonics.
- Harmonics cause problems in power systems
- IEEE Std 519-2014 provides a basis for limiting harmonics.
- Multiple methods exist for mitigating harmonics and *one size does not fit all*.

Topics

- . IEEE-519 Recommendations
 - 2. AC Drives and Harmonics
 - 3. Why Care?
 - 4. How to Stomp out Harmonics

IEEE 519-2014 Recommendations

The Institute of Electrical and Electronics Engineers (IEEE) has set guidelines for applying limits to the level of harmonic distortion that a utility customer may inject into the power system. The guidelines pertain to percent harmonic current and voltage distortion at the point of common coupling (PCC), which is defined as the point where the utility connects to multiple customers.

Voltage distortion limits @ PCC:

Which Came First?

Voltage Distortion

Current Distortion

Which Came First?

Voltage Distortion

Current Distortion

In this case...the Egg!

Current distortion causes Voltage distortion

Voltage distortion is created by pulling <u>distorted current</u> through an impedance.

Amount of voltage distortion depends on:

- System impedance
- Amount of distorted current pulled through the impedance
- If either increases, V_{THD} will increase

Point of Common Coupling

- PCC is where harmonic limits are assessed
- Very misunderstood and misapplied part of IEEE- 519
- Prevent one customer from harming another
- Not intended to be applied within a user's system

Point of Common Coupling

- True PCC will often be at MV transformer primary
 - Regardless of transformer ownership or meter location
- Not often practical to perform MV measurements
- Common to measure on LV secondary
 - Do what we can safely and easily
 - Use I_{sc}/I_L ratio from primary to determine current limits
 - LV measurements are sufficient most of the time
- If there is a dispute between utility and customer, it may be necessary to measure or calculate harmonics at the MV transformer primary

Point of Common Coupling

Update for IEEE 519-1992

The 2014 version re-emphasizes and clarifies IEEE Std 519, as written, is to be applied at the PCC - the point of common coupling between the utility and the use.

Total Demand Distortion

Harmonics meters measure THD

Individual harmonics in % of I1 (fundamental)

IEEE-519 current harmonic limits use TDD

Individual harmonics in % of IL (load)

What Are Harmonics?

- Usually expressed as % of fundamental
- Voltage or current harmonics? Be clear!
- Often better to express as Volts or Amps

- When added together, harmonics result in a distorted waveform
- Diode converters convert AC to DC and require two diodes (pulses) per phase

- In AC drives, diode converter bridges produce harmonics according to the rule h = nk +/- 1
 - h is the harmonic produced
 - n is the number of diodes
 - k is an integer

Harmonics Sources

Common Sources

Power Electronic Equipment (drives, rectifiers (UPS), computers, etc.)

Arcing Devices (welders, arc furnaces, fluorescent lights, etc.)

Rotating Machines (generators)

Lighting ballasts

UPS systems

AC and DC drives

Expected Harmonics

Source	<u>Typical Harmonics*</u>
6 Pulse Drive/Rectifier	5, 7, 11, 13, 17, 19
12 Pulse Drive /Rectifier	11, 13, 23, 25
18 Pulse Drive	17, 19, 35, 37
Switch-Mode Power Supply	3, 5, 7, 9, 11, 13
Fluorescent Lights	3, 5, 7, 9, 11, 13
Arcing Devices	2, 3, 4, 5, 7
Transformer Energization	2, 3, 4

* Generally, magnitude decreases as harmonic order increases

A Long, Long Time Ago.... Electrically Linear World

Today . . . Increasingly Non-linear

Who Cares About Harmonics?

Utilities

Users

Maintenance & Facility

Engineers

Utilities

The power company typically supplies a reasonably smooth sinusoidal waveform

...but nonlinear devices distort voltage and current waveforms resulting in poor power quality on the distribution grid with further implications

Utilities

Harmonics can be thought of as power which does no useful work but requires extra generation and distribution capacity

With the increased number of motors controlled by inverters and other nonlinear power electronics, utilities are delivering a higher percentage of "harmonic power" without a comparable increase in revenue

Some utilities have introduced billable charges for harmonic distortion

Users

- Control capital expenses
- Needs to be a good citizen in the electrical community via IEEE-519 compliance
- Seek increased uptime and profits
- Want to protect electrical assets
- Work to add value to facilities
- Desire reduced energy expenses

Maintenance and Facility Engineers

- Need to protect sensitive electronic equipment
- Want to reduce downtime due to thermal and other problems
- Everything needs to look good on the oscilloscope
- Need to eliminate the problems of drive loads on emergency backup generators

Maintenance and Facility Engineers

Concern System Overheating and efficiency loss, leads to **Distribution Transformers** over-sizing and more increased losses Standby generator Distortion dramatically reduces capacity, synch issues with zero crossings for relays **Communications Equipment** Downtime and loss of productivity Computers & Computer Systems Nuisance tripping and downtime Diagnostic equipment Nuisance tripping and erroneous results Charges for harmonic pollution Utility

System Inefficiency with Harmonics

Transformer Efficiency - 75 kVA Example

System Inefficiency with Harmonics

- Motor damage, losses (heating) from "negative sequence currents"
- High harmonics = low total power factor (utility penalties)
 - "Negative Sequence Current"
 - Tries to rotate motor in opposite direction
 - Causes motor losses, heating and vibrations

5th Harmonic Rotation

60Hz Rotation

System Inefficiency with Harmonics

Induction Motors

- Measured ~ 0.1% decrease in efficiency for each 1% increase in voltage THD
- Effects:
 - Slight capacity reduction
 - Slight increase in energy consumption
 - Higher temperatures and resultant life reduction
 - Arrhenius Equation "10°C increase decreases component life by 50%"

Why One Size Doesn't Fit All

IEEE-519 is a system recommendation not a product specification

The same drive in two different installations will have completely different harmonic profiles

Why spend more cleaning up harmonics than is needed to meet IEEE-519?

Case Studies

2 case studies with 100 hp 6 pulse drive and 3% line reactor

	Case 1	Case 2	
Utility XFMR	5 MVA	1 MVA	
Local XFMR	3 MVA	500 KVA	
Connected Linear Load	1200 HP	35 HP	

Case Study Results

		Case 1		Case 2	
	IEEE-519 Guideline	Distortion IEEE-519 [Distortion	IEEE-519
V _{THD} Local	3%	0.71%	1% Pass		Fail
V _{THD} Main	3%	0.26%	Pass	1.12%	Pass
I _{THD} Main	8%	3.88%	Pass	29.33%	Fail

Even though both cases have identical drive loads, Case 1 meets the IEEE-519 recommendation, while Case 2 will require a 21% reduction in current distortion.

Case Study Conclusions

		Case 1		Case 2		
	IEEE-519 Guideline	Distortion IEEE-519 [Distortion	IEEE-519	
V _{THD} Local	3%	0.71% Pass		3.55%	Fail	
V _{THD} Main	3%	0.26%	Pass	1.12%	Pass	
I _{THD} Main	8%	3.88%	Pass	29.33%	Fail	

Even though both cases have identical drive loads, the drive harmonics in Case 1 are sufficiently diluted and no action is needed to meet IEEE-519. However, in Case 2, the drive harmonics dominate the source and some investment will be required to ensure compliance with IEEE-519.

How to Stomp Out Harmonics

There are several alternatives for the attenuation of harmonics, some of which offer distinctive advantages over others. Among the most popular methods are:

- Additional inductive reactance (Reactors, ISO Transformer)
- Passive filters
- Active filters
- 12 pulse converters
- 18 Pulse converter
- Active Front End Drive- Z1000U

Harmonics & Cancellation

Without Cancellation

With Cancellation

Inductive Reactance

Method

 Add a line reactor or isolation transformer to attenuate harmonics

Benefits

- Low cost
- Technically simple

Concerns

- Tends to offer reductions in only higher order harmonics
- Has little effect on the 5th and 7th harmonics
- Because of the associated voltage drop there are limits to the amount of reactance that may be added

Inductive Reactance

Inductive Reactance

Harmonic	Reactor Size						
Order	0.5%	1.0%	3.0%	5.0%	10.0%		
5 th	80.0%	60.0%	40.0%	32.0%	23.0%		
7 th	60.0%	37.0%	16.0%	12.0%	7.5%		
11 th	18.0%	12.0%	7.3%	5.8%	4.0%		
13 th	10.0%	7.5%	4.9%	3.9%	2.8%		
17 th	7.3%	5.2%	3.0%	2.2%	0.4%		
19 th	6.0%	4.2%	2.2%	0.8%	0.2%		
I _{THD} (%)	102.5%	72.2%	44.1%	35.0%	24.7%		
Ι _T / Ι ₁	143.0%	123.0%	109.0%	106.0%	103.0%		

Passive Filters

Method

- Provide a low-impedance path to ground for the harmonic frequencies
- Provides input reactance to mitigate higher order harmonics

Benefits

 Very cost-effective method of reducing harmonics at the source

Concerns

- Tuning the filters correctly may be challenging
- Filters are difficult to size because they can offer a path for harmonics from any source
- Failure of the filter provides no notification

Passive Filters

Passive Filter

₁ = 100%	I ₁₁ = 0.24%	l ₁₉ = 0.50%
₅ = 3.76%	I ₁₃ = 1.1%	l ₂₃ = 0.55%
₇ = 1.65%	I ₁₇ = 0.80%	I ₂₅ = 0.80%

H_c = 8.6 Amps

Active Filters

Method

 Inject equal and opposite harmonics onto the power system to cancel those generated by other equipment

Benefits

- Have proven very effective in reducing harmonics well below required levels
- New designs do not require power line to be opened

Concerns

 The high-performance inverter required for the harmonic injection is costly

Active Filters

12 Pulse Converter

Method

- Two separate converter bridges supply a single DC bus
- The two bridges are fed from phase-shifted supplies

Benefits

- Very effective in the elimination of 5th and 7th harmonics
- Stops harmonics at the source
- Insensitive to future system changes

Concerns

- May not meet the IEEE standards in every case
- Does little to attenuate the 11th and 13th harmonics

12 Pulse Converter

Externally mounted 3 winding transformer; more wire and cabling; complicated

Current slightly distorted TDD 8% to 15% (depending on network impedance

18 Pulse Converter

Method

 18-Pulse converter design which draws an almost purely sinusoidal waveform from the source

Benefits

- Meets the IEEE standards in every case
- Attenuates all harmonics up to the 35th
- Insensitive to future system changes
- Increases life of drive through incredibly stable DC bus voltage (18 small inputs instead of 6 large ones)

Concerns

Not cost effective at small HP levels (50HP and smaller)

18 Pulse Converter

0.08

0.028

AC Drives & Harmonics

6-pulse converter without choke waveform:

Note that diode converter bridges produce harmonics according to the rule h = nk +/- 1, where h is the harmonic produced, n is the number of diodes and k is an integer. Note magnitude of lower order harmonics. Harmonic Content $h_5 = 79.5\%$ $h_7 = 60.1\%$ $h_{11} = 18.2\%$ $h_{13} = 10.0\%$ $h_{17} = 7.3\%$ $h_{19} = 6.0\%$ $h_{23} = 4.1\%$ Harmonic_Distributed

AC Drives & Harmonics

6-pulse converter with 3% Reactor waveform:

Note that diode converter bridges produce harmonics according to the rule h = nk +/- 1, where h is the harmonic produced, n is the number of diodes and k is an integer. Harmonic content is approximately 50% of that produced by a converter without choke. Harmonic Content $h_5 = 42.5\%$ $h_7 = 29.38\%$ $h_{11} = 6.10\%$ h₁₃ = 4.06% $h_{17} = 2.26\%$ $h_{19} = 1.77\%$ h₂₃ = 1.12% Harmonic Distribution $\Pi_{25} = 0.86\%$

h17

h13

h11

h7

50

37.5

25

12.5

0

h23

h19

Harmonic Comparison of C-H Drives

Harmonic Comparison of C-H Drives

Active Front End Drive

Comparisons

		Drive Options					Input Filter options			
						Line reactor				
						(aka input	DC Link Reactor (aka			
		AC to AC	6 pulse	12 pulse	18 pulse	reactor)	dV/dt reactor)	tuned passive harmonic filter	active harmonic filter	
						InstelCive (put)		$\left \begin{array}{c} \left \begin{array}{c} \left \begin{array}{c} \left \begin{array}{c} \left \begin{array}{c} \left \end{array}{c} \right \right \\ \left \begin{array}{c} \left \end{array}{c} \right \\ \left \end{array}{c} \left \end{array}{c} \left \end{array}{c} \left \end{array}{c} \right \\ \left \end{array}{c} \left \end{array}{c} \left \end{array}{c} \left \end{array}{c} \right \\ \left \end{array}{c} \left \end{array}{c} \left \end{array}{c} \right \\ \left \end{array}{c} \right \\ \left \end{array}{c} \right \\ \left \end{array}{c} \left \end{array}{c} \left \end{array}{c} \left \end{array}{c} \right \\ \left \end{array}{c} \left \end{array}{c} \left \end{array}{c} \left \end{array}{c} \right \\ \left \end{array}{c} \left \end{array}{c} \left \end{array}{c} \left \end{array}{c} \left \end{array}{c} \left \end{array}{c} \right \\ \left \end{array}{c} \left \end{array}{c} \left \end{array}{c} \left \end{array}{c} \left \end{array}{c} \right \\ \left $		
	Reduces input line harmonics	yes	no	yes	yes	yes	yes	yes	yes	
	protects drive from current spikes	yes	no	yes	yes	yes	yes	yes	yes	
	reduces dv/dt and									
efits	di/dt rates	yes	no	yes	yes	no	yes	no	yes	
Ben	reduces DC bus	no DC hus	20	VOS	VOS	20	VOS		20	
	transient overvortage	no be bus		yes	yes		yes			
	reduces common									
	mode (shaft) currents	yes	no	yes	yes	n/a				
	optimized for									
	switching frequencies	yes	can be	yes	yes	no	no	yes	yes	
ŝ	voltage drop	no	no	ves	ves	ves	no	no	no	
age	size & weight issues	no	no	yes	yes	no	no	yes	yes	
van	multiple connection	no	no	yes	yes	yes	no	yes	yes	
Disad	sensitive to unbalance	no	no	yes	yes!!!	no	no	no	yes	
	All Nema 1 Configured									
	30 HP @ 480v	\$ 7,856,00	\$ 2,770,00	\$ 10.085.00	\$ 11 870.00			\$ 3,234 (0 Sized for corrective amos and will not	
	Size & Weight	60"x22"x22" 285lb	40"x9"x15" 70lb	84"x38"x31" 440lb	84"x38"x31" 440lb			32"x18"x13"	be a standard. Usually built to order.	
	40 HP @ 480v	\$ 8,952.89	\$ 3,290.00	\$ 10,557.00	\$ 12,421.00			\$ 3,735.0	0	
st	Size & Weight	60"x22"x22" 315lb	40"x9"x15" 75lb	84"x38"x31" 440lb	84"x38"x31" 440lb			32"x18"x13"	Usually not sized for individual drive	
og pc	50 HP @ 480v	\$ 10.193.00	\$ 4.012.00	\$ 11.851.00	\$ 13.942.00			\$ 4.136.0	0 locations, applied to handle multiple	
gar		+	+ ,,	+	+			+ ,	non-linear loads connected to a	
ntin	Size & Weight	60"x22"x22" 325lb	46"x11"x15.5" 94lb	84"x38"x31" 593lb	84"x38"x31" 602lb			32"x18"x13"	single	
nom	60 HP @ 480v	\$ 11,388.00	\$ 4,689.00	\$ 13,211.00	\$ 15,542.00			\$ 4,588.0	0 power distribution system.	
-	Size & Weight	60"x22"x22" 340lb	46"x11"x15.5" 108lb	84"x38"x31" 614lb	84"x38"x31" 633lb			32"x18"x13"	0	
	Size & Weight	5 13,781.00	> 5,334.00	> 15,145.00 84"x38"x31" 6951b	92"x44x35" 755lb			2 5,029.0		
	100 HP @ 480v	\$ 15.849.00	\$ 6.740.00	\$ 17.544.00	\$ 20.642.00			\$ 6.312.0	0	
	Size & Weight	60"x30"x22" 440lb	43"x26"x19" 264lb	92"x44x35" 755lb	92"x44x35" 902lb			32"x18"x13"		
	125 HP @ 480v	\$ 18,487.00	\$ 7,955.00	\$ 19,799.00	\$ 23,293.00			\$ 7,417.0	0	
	Size & Weight	86"x41"x32" 765lb	54"x34"x21" 439lb	92"x44x35" 833lb	84"x66"x31" 1107lb			56"x18"x17"		

Harmonics Performance Comparisons

Matrix IGBT Bi-directional Switch

Circuit of Insulated Gate Bi-Polar Transistors (IGBT) and diodes

- Enables bi-directional switching between input phases
- Switching produces simulated sine wave output
- Enables regenerative power back to the supply

Matrix Drive Topology

AC input to variable frequency AC output

- Nine bi-directional switches
- No DC bus

Price

- Comparable to other lowharmonic solutions
- Not comparable to conventional drives

Advantages

- Ultra-low input harmonics
- Near-unity true power factor
- Regenerative energy savings
- Smaller than other harmonic solutions

Z1000U vs. Multi-Pulse **Harmonics Comparison**

Excellent low harmonic performance over wide load range

-Matrix -12-pulse -18-pulse

Output Solutions

	All Nema 1 Configured		
	30 HP @ 480v	\$ 4,672.00	\$ 982.00
	Size & Weight	32"x18"x13"	12"x8"x 12"
	40 HP @ 480v	\$ 4,672.00	\$ 1,071.00
	Size & Weight	36"x19"x30"	12"x8"x 12"
ŝ			
5	50 HP @ 480v	\$ 5,785.00	\$ 1,395.00
	Size & Weight	36"x19"x30"	12"x8"x 12"
	60 HP @ 480v	\$ 5,852.00	\$ 1,914.00
Ê.	Size & Weight	36"x19"x30"	12"x8"x 12"
	75 HP @ 480v	\$ 6,250.00	\$ 2,157.00
	Size & Weight	36"x19"x30"	16.5"x18"x30"
	100 HP @ 480v	\$ 6,496.00	\$ 2,157.00
	Size & Weight	36"x19"x30"	16.5"x18"x30"
	125 HP @ 480v	\$ 7,327.00	\$ 2,317.00
	125 HP @ 480v Size & Weight	\$ 7,327.00 36"x19"x30"	\$ 2,317.00 16.5"x18"x30"

		Output filter Options							
		R-C Low Pass Filter	L-R Low Pass Filter	Sine-Wave Filter	dv/dt Filter (aka load reactors)	High frequency common-mode filters			
		RC Filter			VFD New dvidt Filter Fig. 6: Schematic of the proposed dvidt filter having a blocking capacitor is series with damping resistor R.				
	Reduces input line harmonics	Passes low frequency and reduces high frequencies							
	protects drive from current spikes			ok up to 150 m	ok up to 500 m	does not reduce stress on motor insulation			
nefits	reduces dv/dt and di/dt rates								
Be	reduces DC bus transient overvoltage								
	reduces common mode (shaft) currents			yes	yes	yes			
	optimized for switching frequencies		High	High	Low				
se	voltage drop			typically 4-10% voltage drop	typically 0.5% voltage drop	n/a			
ntag	size & weight issues								
dvar	multiple connection								
Disac	sensitive to unbalance								

All Nema 1 Configured 30 HP @ 480v Size & Weight 40 HP @ 480v

\$ 4,672.00 \$ 32"x18"x13" 4,672.00 \$ \$

Thank you! Ready to Learn More?

www.MechanicalResource.com

